یادگیری ماشین چیست؟ تعریف ساده
2019-11-11 0

یادگیری ماشین (Machine Learning) یکی از زیر مجموعه های هوش مصنوعی است که به سیستم ها این امکان را می دهد تا به صورت خودکار یادگیری و پیشرفت داشته باشند بدون اینکه به برنامه نویسی صریحی برای آن داشته باشند. تمرکز اصلی یادگیری ماشینی بر توسعه برنامه های رایانه ای است که بتوانند به داده ها دسترسی پیدا کنند و از آن برای یادگیری خود استفاده کنند.

فرآیند یادگیری با مشاهدات یا داده ها آغاز می شود، مانند مثال ها، تجارب مستقیم و یا دستور العمل ها، تا به یک الگو در داده ها برسند و بر اساس این مثال هایی که ارائه می دهیم، تصمیمات بهتری بگیرند. هدف اصلی آن است که به کامپیوتر این اجازه را بدهیم که بدون دخالت و کمک انسان به طور اتوماتیک یادگیری داشته باشند و بتوانند اقدامات خود را بر مطابق با آن تنظیم کنند.

machine-learning

مفهوم ساده یادگیری ماشین

الگوریتم های بسیار مختلفی برای یادگیری ماشینی وجود دارد و هر روزه صدها الگوریتم جدید نیز تولید می شوند، و به طور معمول توسط سبک یادگیری (learning style) (مانند یادگیری نظارت شده، یادگیری بدون نظارت، یادگیری نیمه نظارت) و یا با توجه به شباهتشان در فرم و عملکرد ( مانند طبقه بندی، برگشت، درخت تصمیم گیری، دسته کردن، یادگیری عمیق و…) گروه بندی می شوند. صرف نظر از سبک یادگیری یا عملکرد، تمام الگوریتم های یادگیری ماشینی به شرح زیر هستند:

  • نمایش: مجموعه ای از طبقه بندی کننده ها یا زبانی که کامیوتر آن را می فهمد.
  • ارزشیابی:  همچنین معروف به عملکرد هدف/نمره دهی.
  • بهینه سازی: روش جست و جو؛ اغلب طبقه بندی کننده ای با بالاترین امتیاز.

 هدف اساسی الگوریتم های یادگیری ماشینی، تعمیم یادگیری ها به فراتر از نمونه های آموزش داده شده است، یعنی تفسیر موفقیت آمیز داده ها.

برخی از روش های یادگیری ماشین

الگوریتم های یادگیری ماشین عمدتا در دو نوع نظارت شده و نظارت نشده دسته بندی می شوند.

  • الگوریتم یادگیری ماشینی نظارت شده می تواند از آن چه که در گذشته آموخته اند و همچنین داده های جدید برچسب گذاری شده، برای پیشبینی آینده استفاده کند. این کار از آنالیز مجموعه داده های آموزشی شروع می شود، الگوریتم یادگیری یک عملکرد استنباطی تولید می کند تا پیش بینی های مربوط به مقادیر خروجی را انجام دهد. این نوع سیستم قادر است پس از آموزش های کافی برای هر داده جدیدی هدف مشخص کند. این الگوریتم یادگیری همچنین می تواند خروجی اش را با خروجی درست و از قبل تعیین شده مقایسه کند و خطاهای موجود را بیابد تا بر اساس آن مدل را اصلاح کند.
    • در مقابل، زمانی از الگوریتم های یادگیری ماشینی بدون نظارت استفاده می شود که اطلاعات مورد نیاز برای آموزش نه طبقه بندی شده باشد و نه برچسب زده باشد. یادگیری بدون نظارت چگونگی اینکه سیستم می تواند توصیف ساختار پنهان از داده های بدون برچسب استنباط کنند، مطالعه می کند. این نوع سیستم خروجی مناسب را مشخص نمی کند و تنها می تواند داده ها را کاوش کند و از داده های برچسب زده نشده ساختارهای پنهان را استنتاج می کند.
    • الگوریتم یادگیری نیمه نظارت شده بین دو نوع قبلی قرار دارد. این سیستم از هر دو نوع داده برچسب زده شده و برچسب نزده شده برای آموزش استفاده می کند. سیستم هایی که از این روش استفاده می کنند، می توانند دقت یادگیری را تا میزان قابل توجهی بهبود ببخشند. معمولا زمانی این نوع یادگیری را انتخاب می کنیم که داده های برچسب زده شده بدست آمده  نیاز به منابع ماهر و مرتبط برای آموزش و یادگیری دارند. در غیر این صورت ، دستیابی به داده های دارای برچسب معمولاً نیازی به منابع اضافی ندارد.
    • الگوریتم های یادگیری ماشینی تقویت کننده روشی هستند که به وسیله اقدامات با محیط خود در تعامل هستند و خطاها و پاداش ها را کشف می کنند. آزمایش، جست و جوی خطاها و  پاداش های تاخیری مهم ترین ویژگی های یادگیری تقویتی هستند. این نوع یادگیری به ماشین ها و عوامل نرم افزار اجازه می دهد تا به طور خودکار، برای به حداکثر رساندن عملکرد خود، رفتار ایده آل خود را مشخص کنند. این سیستم از بازخورد پاداش ساده استفاده می کند تا ببیند کدام عمل بهتر بهتر است و این امر به عنوان سیگنال تقویت شناخته شده است.

یادگیری ماشینی آنالیز مقادیر انبوهی از داده ها را امکان پذیر می کند. این یادگیری در شناسایی فرصت های سودآور و یا خطرناک معمولا نتایج سریعتر و دقیق تری ارائه می کند اما برای آموزش آن ممکن است به زمان و منابع اضافی نیاز داشته باشیم.  تلفیقی از یادگیری ماشینی و هوش مصنوعی و فناوری های شناختی می تواند در پردازش حجم زیادی از اطلاعات موثر باشد.

منبع: emerj.com

اگر این مطلب برای شما نیز مفید بود، آن را با دوستان خود به اشتراک بگذارید.

نظر بدهید